singular = zero determinant

Nonsingular

Suppose \( A\in F^{n\times n} \)
\( \exists!A^{-1} \)

If suppose \( A\in F^{m\times n} \),rank(\( A \))=\( n\)
\( Ax=0,\)
\( x=O \text{ only }. \)
Example:
\( Ax=b \)
\( A= \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} , b= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} , x= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)

Generally, nonsingular matrix is square and inverse.

Subset && Superset


A is a subset of B.
B is a superset of A.

Power Set

\( \mathcal{P}(A) \text{ or } 2^A \)
disjoint:
\( p(E_1\cap E_2)=0 \)