TheoremSuppose \(A\in F^{m\times n}, B\in F^{n\times m}\)\( tr(AB) = tr(BA) \) Proof:Suppose \( C=AB \in F^{m\times m}, D=BA \in F^{n\times n} \)\( tr(AB)=tr(C)\) \( =\sum_{i=1}^{m}c_{ii}= \sum_{i=1}^{m}\sum_{k=1}^{n}a_{ik}b_{ki} \) \( =\sum_{k=1}^{n}\sum_{i=1}^{m}b_{ki}a_{ik} =\sum_{k=1}^{n}d_{kk}=tr(D)=tr(BA) \) |
ExampleProve that there do not exist \(n\times n\) matrices \(A\) and \(B\) such that \(AB-BA=I_n\).solutionUsing proof by contradiction.Suppose \( (A,B\in F^{n\times n}) \rightarrow (AB-BA=I_n) \) \( tr(AB-BA)=tr(I_n) \) checking this equation whether to be right. \( tr(I_n)= n \) \( tr(AB-BA)= tr(AB)-tr(BA) \) \(\because tr(AB)=tr(BA)\) \(\therefore tr(AB)-tr(BA)=0\) \( \Rightarrow tr(AB-BA)=tr(I_n) \) is contradiction. Therefore, there do not exist \(n\times n\) matrices \(A\) and \(B\) such that \(AB-BA=I_n\) |