PQ

If \(P\), then \(Q\).
\(P\): sufficient condition.
\(Q\): necessary condition.

Direct proof

\(P\rightarrow P_1\rightarrow P_2\rightarrow\dots\rightarrow P_{n-1}\rightarrow P_n\rightarrow Q\)

Proof by contrapositive

\((P\rightarrow Q)\) \(\equiv\) \((\neg Q\rightarrow\neg P)\)
Suppose \(\neg Q\) is right, then \(\neg P\) is right.

Proof by contradiction

Suppose \(P\rightarrow\neg Q\) is right.
Try to proof this suppose is wrong.

Example

Suppose \(n\in Z\), show that if \(n^2\) is odd, then \(n\) is odd.

mathematical induction

\( P(n): \) propositional function
\( P(k): \) inductive hypothesis
\( \forall k\in Z^+ \)
\( [P(1)\wedge\forall(P(k)\rightarrow P(k+1))] \rightarrow \forall n P(n). \)

Suppose \(P(n)\), \(n\in Z^+\)
Step 1(Basis step): \(P(1)\) is true.
Step 2(Inductive step): \(\forall k> 1\), \(P(k)\) is true.
Show that \(P(k+1)\) is true.
Therefore, \(n\in Z^+\), \(P(n)\) is true.

strong mathematical induction

Suppose \(P(n)\), \(n\in Z^+\)
Step 1: \(P(n_0)\) is true.
Step 2: if \(\forall n_0\leq t\leq k\), \(P(t)\) is true. \(\rightarrow P(k+1)\) is true.
Therefore, \(\forall n\geq n_0\), \(P(n)\) is true.

Question

成大109 資工題目: 反證法 數學歸納法
貼足郵資題目

Reference

wiki
黃子嘉-線性代數
Kenneth.H.Rosen - Discrete mathematics and its applications