Matrix polynomial

hint:
\( P(x)= \sum_{i=0}^{n}a_ix^i= a_0x^0+a_1x^1+\dots+a_nx^n \)

Definition

\( P(A)=\sum_{i=0}^{n}a_iA^i= a_0I+a_1A^1+a_2A^2+\dots+a_nA^n \)
Suppose there are two polynomials, \( f(x),g(x) \), \( A\in F^{n\times n} \).
  1. \( f(A)g(A)=g(A)f(A) \)
  2. If \( g(A) \) is a nonsingular matrix. \( f(A)g(A)^{-1}= g(A)^{-1}f(A)\)

    Proof

    • \(f(A)g(A)=g(A)f(A) \)
    • \( \exists!g(A)^{-1} \)
      \( f(A)=g(A)f(A)g(A)^{-1} \)
      \( \Rightarrow g(A)^{-1}f(A)=f(A)g(A)^{-1} \)
    \( \forall \) means all true is true.
    \( \exists \) means for some true is true(one or more).
    \( \exists! \) means only one true is true.

Reference

wiki
黃子嘉-線性代數