| 
	
Symmetric matrix: \(A^T=A\)  ex: \( A= \begin{bmatrix} 5 & 2 & 1 \\ 2 & 7 & 5 \\ 1 & 5 & 8 \end{bmatrix} \)  | 
	
		\(A\) is any square matrix. \(A+A^T\) is a symmetric.  | 
	
		Proof:Suppose \(B=A+A^T\)\( (A+A^T)^T= A^T+(A^T)^T= A^T+A= A+A^T \) \(B^T=B\)  | 
| 
Skew-symmetric matrix: \(A^T=-A\)  ex: \( A= \begin{bmatrix} 0 & 3 & 2 \\ -3 & 0 & 4 \\ -2 & -4 & 0 \end{bmatrix} \)  | 
	\(A\) is any square matrix.  \(A-A^T\) is a skew-symmetric matrix. ** \(tr(A-A^T)=0\)  | 
	
		Proof:Suppose \(B=A-A^T\)\( (A-A^T)^T= A^T-(A^T)^T= A^T-A= -(A-A^T) \) \(B^T=-B\)  |