Question

Solve the recurrence equation \( a_n = a_{n-1}+2a_{n-2} \) with \( a_0 = 0 \) and \( a_1 = 1 \).

ans

Get eigenvalues.
\( a_n - a_{n-1}-2a_{n-2}=0 \)
\( \rightarrow \alpha^2 -\alpha - 2 = 0 \)
\( \rightarrow \alpha = -1 \text{ or } 2 \)

\( a_n = c_1(-1)^n + c_2(2)^n \)
\( \Rightarrow \begin{cases} a_0 = 0 = c_1(-1)^0 + c_2(2)^0 \\ a_1 = 1 = c_1(-1)^1 + c_2(2)^1 \end{cases} \)
\( c_1 = -\frac{1}{3}, \; c_2 = \frac{1}{3} \)

\( \therefore a_n = -\frac{1}{3}(-1)^n +\frac{1}{3}(2)^n ,\; n\geq 0\)


Question

Let \( a_n \) denote the number of bit strings of length \( n \) that do not have two consecutive 0's.
Let \( A \) denote the set of bit strings without two consecutive 0's.
  1. Find a recurrence relation for \( a_n \).
  2. Give initial conditions for \( a_n \).
  3. Solve the recurrence relation for \( a_n \).

ans

\( a_n \)代表在長度n時的方法數。
    1. 討論第n個bit的可能
    2. 第\( n \) bit為0:
      那第\( n-1 \) bit 就不能為0,方法數為1,那\( n-2 \)項之前的bit不含有連續的0即可,則討論為\( 1\cdot a_{n-2} \)
    3. 討論討論第n項bit為1,那只要\( n-1 \)之前的bit不含連續0就行了。
      即為\( a_{n-1} \)
    4. 最後得出\( a_n = a_{n-1} + a_{n-2} \)
  1. 當只有一個位數時,顯然不會有連續的0。方法數為2。\( a_1 = 2 \),當有兩位數時,可能bit為11, 01, 10,三種可能,\( a_2 = 3 \),當有三位數時,就要討論第三位數為1或0,即\( a_n = a_{n-1}+a_{n-2} \)的遞迴情況,所以intial condition 為\( a_1 = 2,\;a_2 = 3 \)。
  2. 為Fibonacci向右移兩項,
    \( \Rightarrow a_n=F_{n+2} = \frac{1}{\sqrt{5}} [(\frac{1+\sqrt{5}}{2})^{(n+2)}-(\frac{1+\sqrt{5}}{2})^{(n+2)}], \; n\geq 1 \)