two vector \( u \) and \( v \)

\( u\times v = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \end{vmatrix} \) is perpendicular to \( u \) and \( v \).

The cross product \( v\times u \) is \( -(u\times v) \)
\( u\cdot (u\times v) = v\cdot (u\times v) = 0 \)
\( u\times u = v\times v = 0 \)
\( \lVert u\times v\rVert = \lVert u\rVert \lVert v\rVert |\sin\theta| \)

\( |u\cdot v| = \lVert u\rVert \lVert v\rVert |\cos\theta| \)

Triple Product

\( (u\times v)\cdot w = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \\ \end{vmatrix} = \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \end{vmatrix} = \text{Volumn} \)

If \( (u\times v)\cdot w =0 \) that means \( u,v,w \) lies in same plane.