The determinant of a square matrix is a single number.
The determinant is zero when the matrix has no inverse
(singular).
sign as
\(
\det(A)
\) or
\(
|A|
\).(A is a square matrix)
\(
det(A^{-1})=\frac{1}{det(A)}
\)
\(
\det(A)=0
\) example:
\(
\begin{vmatrix}
a & b \\
a & b
\end{vmatrix}
=0
\)
,
\(
\begin{vmatrix}
0 & 0 \\
c & d
\end{vmatrix}
=0
\)
,
有相同行的的行列式也等於0
\(
\begin{vmatrix}
f & f \\
g & g
\end{vmatrix}
=0
\)
without permutation, gauss elimination
\(
\det(A)
\) unchanged example:
\(
\ell \in R
\)
\(
\begin{vmatrix}
a & b \\
c-a\ell & d-b\ell
\end{vmatrix}
=
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
+(-\ell)
\begin{vmatrix}
a & b \\
a & b
\end{vmatrix}
=
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
\)
triangular matrix
if \( A \) is triangular \( \rightarrow \)
product of diagonal entries.
\(
\begin{vmatrix}
a & b \\
0 & d
\end{vmatrix}
=
ad
\),
\(
\begin{vmatrix}
a & 0 \\
c & d
\end{vmatrix}
=
ad
\)
\(
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
=0
\leftrightarrow
\text{singular}
\)
\(
|AB|=|A||B|
\)
When the \( B \) is
\( A^{-1} \), this rule says
that the determinant of \( A^{-1} \)
is \( \frac{1}{\det A} \)
\(
\det (AA^{-1})= (\det A)(\det A^{-1})
=\det I
=1
\)
determinant method
pivots
The product of the pivots.
\(
\det(PA)=\det(LU)
\)
gives that
\(
\det A =\pm\det U
\)