Suppose \( A= \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix} , a_i\in V, i=\{1,2,3\} \)

Key idea
\( \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix} \begin{bmatrix} 1 & x_1 & 0 \\ 0 & x_2 & 0 \\ 0 & x_3 & 1 \end{bmatrix} = \begin{bmatrix} a_{1} & b & a_3 \end{bmatrix} = B_2 \)

\( \Rightarrow \det( \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix} \begin{bmatrix} 1 & x_1 & 0 \\ 0 & x_2 & 0 \\ 0 & x_3 & 1 \end{bmatrix} ) = \det(B_2) \)

\( \Rightarrow \det(A) \det( \begin{bmatrix} 1 & x_1 & 0 \\ 0 & x_2 & 0 \\ 0 & x_3 & 1 \end{bmatrix} ) = \det(B_2) \)

\( \Rightarrow \det( \begin{bmatrix} 1 & x_1 & 0 \\ 0 & x_2 & 0 \\ 0 & x_3 & 1 \end{bmatrix} ) =x_2 = \frac{\det(B_2)}{\det(A)} \)

以此類推。

\( x_1=\frac{\det B_1}{\det A} \)

\( x_3=\frac{\det B_3}{\det A} \)