Empty set is subset any of set. |
Example: \( \emptyset\subseteq\emptyset \) \( \{\}\subseteq\{\} \) |
\(
\{\}=\emptyset\not\in\emptyset=\{\}
\) \( \{\}=\emptyset\in\{\emptyset\}=\{\{\}\} \) |
\(
A =
\{\;\emptyset, \; \{\emptyset\}, \;\{\emptyset, \{\emptyset\}\}\;\}
\) \( \emptyset \in A= \{\;{\color{blue}\emptyset}, \; \{\emptyset\}, \;\{\emptyset, \{\emptyset\}\}\;\} \) \( \{\emptyset\} \in A= \{\;\emptyset, \; {\color{blue}\{\emptyset\}}, \;\{\emptyset, \{\emptyset\}\}\;\} \) \( \{\; \emptyset,\{\emptyset\} \;\} \subset A= \{\;{\color{blue}\emptyset, \; \{\emptyset\}}, \;\{\emptyset, \{\emptyset\}\}\;\} \) \( \{\; \{\emptyset,\{\emptyset\}\} \;\} \subset A= \{\;\emptyset, \; \{\emptyset\}, \;{\color{blue}\{\emptyset, \{\emptyset\}\}}\;\} \) \( \{\; \emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\} \;\} \subseteq A= \{\;{\color{blue}\emptyset, \; \{\emptyset\}, \;\{\emptyset, \{\emptyset\}\}}\;\} \) |
relative complementas difference.\( A^c\cap B = B-A\) \( =B\backslash A \) |
|
absolution complement\( A^c=U\backslash A=\overline{A}\)\( =\{x|(x\not\in A) \cap (x\in U)\} \) \( =U-A \) |
\(
\oplus
\)(oplus)
,
\(
\Delta
\)(delta) \( A\oplus B =A\Delta B \) \( =(A-B)\cup(B-A) \) \( =(A\cup B)-(A\cap B) \) |
|