Floor && (Ceiling)

Suppose \( x\in R \)

floor

\( \exists!n\in Z \rightarrow \) \( n\leq x < n +1 \), sign as \( n = \lfloor x \rfloor \)

ceiling

\( \exists!n\in Z \rightarrow \) \( x\leq n < x +1 \), sign as \( n = \lceil x \rceil \)
\( -\lfloor x \rfloor = \lceil -x \rceil \)

\( -\lceil x \rceil = \lfloor -x \rfloor \)

Exercise

Determine true or false.
\( \lfloor 2x \rfloor \) \( =\lfloor x \rfloor+ \lfloor x+\frac{1}{2} \rfloor \)

solution

Suppose \( x=z+r, z\in Z, 0\leq r <1 \)
\( (\rightarrow ) \)
\( \lfloor 2x \rfloor =\lfloor 2z+2r \rfloor =2z+\lfloor 2r \rfloor = \begin{cases} 2z \text{, if } r< \frac{1}{2}\\ 2z+1 \text{, if } r\geq \frac{1}{2}\\ \end{cases} \)
\( (\leftarrow) \)
\( \lfloor x \rfloor + \lfloor x+\frac{1}{2} \rfloor = \lfloor z+r \rfloor + \lfloor z+r+\frac{1}{2} \rfloor = z+z+\lfloor r+\frac{1}{2} \rfloor = \begin{cases} 2z \text{, if } r< \frac{1}{2}\\ 2z+1 \text{, if } r\geq \frac{1}{2}\\ \end{cases} \)
\( \therefore \lfloor 2x \rfloor \) \( =\lfloor x \rfloor+ \lfloor x+\frac{1}{2} \rfloor \)

Theorem

Suppose \( x,y\in R \)
\( x-1<\lfloor x \rfloor\leq x \)
\( \lfloor x+n \rfloor=\lfloor x \rfloor +n ,\forall n\in Z \)
\( \lfloor x \rfloor+\lfloor y \rfloor \leq \lfloor x+y \rfloor \leq \lfloor x \rfloor+\lfloor y \rfloor +1 \)
\( \lfloor x \rfloor + \lfloor -x \rfloor = \begin{cases} 0\text{ ,if } x\in Z\\ -1\text{ , otherwise} \end{cases} \)

Exercise

Suppose \( x\in R, x\geq 0 \),
Show that \( \lfloor \sqrt{\lfloor x \rfloor}\rfloor = \lfloor \sqrt{x} \rfloor \)

solution

Suppose \( m=\lfloor \sqrt{\lfloor x \rfloor} \rfloor \)
\( \rightarrow m\leq \sqrt{\lfloor x \rfloor} < m+1 \)
\( \rightarrow m^2\leq \lfloor x \rfloor < (m+1)^2 \)
\( \rightarrow m^2\leq x < (m+1)^2 \)
\( \rightarrow m\leq \sqrt{x} < m+1 \)
\( \therefore m=\lfloor \sqrt{x} \rfloor = \lfloor \sqrt{\lfloor x \rfloor}\rfloor \)