We count the ways to distribute objects, distinguishable or indistinguishable, into indistinguishable boxes.
There are no closed formulae to use in these cases.
distinguishable objects and indistinguishable boxes
-
more difficult(no closed formulae).
Stirling numbers of the second kind.(boxes cannot be empty.)
S(n,j): n distinguishable objects into j indistinguishable boxes.
Using in n distinguishable objects and k indistinguishable boxes.
\[
\sum_{j=1}^{k}
S(n,j)=
\sum_{j=1}^{k}
\frac{1}{j!}\sum_{i=0}^{j-1}(-1)^{i}
\begin{pmatrix}
j \\
i
\end{pmatrix}
(j-i)^{n}
\]
ex.
S(4,3)=6.
S(4,2)=7.
S(4,1)=1.
6+7+1=14. stirling number of the second kind