題目

定義

Cartisan Product (ordered pair)

\( A\times B \)

Definition

\( A\times B = \{ (a,b)|a\in A, b\in B \} \)
\( (a,b) \) is a ordered pair.
Suppose \( a\neq b \)
\( (a,b) \neq (b,a) \)
Suppose \( |A|=m, |B|=n \),
\( |A\times B|=mn \)

example

\( A=\{1,2,3\} \), \( B=\{4,5\} \)
\( A\times B= \{ (1,4),(1,5),(2,4),(2,5),(3,4),(3,5) \} \)
\( |A|=3, |B|=2 \)
\( |A\times B|=6 \)

Excerise

Suppose \( A=\{0.1,0.2\}, B=\{0.3\} \),
\( \text{Determine }2^B \text{ and } A\times 2^B\text{?} \)

solution

\( 2^B= \{\emptyset, \{0.3\}\} \)
\( A\times 2^B= \) \( \{\;(0.1,\emptyset),\;(0.1,\{0.3\}),\;(0.2,\emptyset),\;(0.2,\{0.3\})\;\} \)

Excerise

Let \( A \) be the set \( \{1,2,3\} \) and \( B \) be the set \( \{3.14, 2.71\} \).
How many elements are there in the set \( 2^{2^A\times 2^B} \)?

solution

ans. \( |2^{2^A\times 2^B}| \)
\( |A|=3, |B|=2 \)
\( |2^A|=|\mathcal{P}(A)|=2^3, |2^B|=|\mathcal{P}(B)|=2^2, \)
\( |2^A\times 2^B|=2^3\times 2^2=2^5 \)
\( |2^{2^A\times 2^B}|=|\mathcal{P}(2^A\times 2^B)| = 2^{2^5} =2^{32} \)