polynomially bounded

\( f(x)=O(n^k), \forall k\in R \)
\( \log(f(x))=O(\log n) \)
小於 \( \log n \) 的為 polynomially bounded.
ptt參考

Log

\( \log \)底數沒寫出來通常是\( 10 \)
\( \lg \)為\( \log \)底數為\( 2 \)
\( \ln \)為\( \log \)底數為\( e \) = Euler's number \( =1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\dots = 2.718\dots \)

\( \lg 3 \approx 1.58 \)
\( \log n = o(n^{0.1\dots }) \)
\( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\dots +\frac{1}{n}=\Theta(\log n) \)
\( \lg(n!)=\Theta(n\log n) \)
master theorem:
\( T(n)=aT(\frac{n}{b})+f(n) \)
\( (\log_an)^b = o(n^k) \), \( k=\log_{\lg n}(\frac{f(n)}{n^{\log_ba}}) \)