| Greedy algorithm |
|---|
|
簡易說明: 每次拿最佳、最多、優先權最高的解決方式來當最佳解, 優點是考慮不須太多,判斷速度快, 但衍生出來的問題,可能會會因為順序問題,造成浪費,最後整體不是最佳解的情況發生。 |
| V\D | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | \( 0 \) |
\( a_1=1,\) \(a_4=0,\) \(a_6=0, \) \( a_t=1 \) |
\(a_1=2,\) \(a_4=0,\) \(a_6=0, \) \(a_t=2 \) |
\(a_1=3,\) \(a_4=0,\) \(a_6=0, \) \(a_t=3 \) |
\(a_1=4,\) \(a_4=0,\) \(a_6=0, \) \(a_t=4 \) |
\(a_1=1,\) \(a_4=1,\) \(a_6=0, \) \(a_t=2 \) |
\(a_1=2,\) \(a_4=1,\) \(a_6=0, \) \(a_t=3 \) |
\(a_1=1,\) \(a_4=0,\) \(a_6=1, \) \(a_t=2 \) |
\(a_1=2,\) \(a_4=0,\) \(a_6=1, \) \(a_t=3 \) |
| 4 | 0 | - | - | - |
\(a_1=0,\) \(a_4=1,\) \(a_6=0, \) \(a_t=1 \) |
\(a_1=1,\) \(a_4=1,\) \(a_6=0, \) \(a_t=2 \) |
\(a_1=2,\) \(a_4=1,\) \(a_6=0, \) \(a_t=3 \) |
\(a_1=3,\) \(a_4=1,\) \(a_6=0, \) \(a_t=4 \) |
\(a_1=0,\) \(a_4=2,\) \(a_6=0, \) \(a_t=2 \) |
| 6 | 0 | - | - | - | - | - |
\(a_1=0,\) \(a_4=0,\) \(a_6=1, \) \(a_t=1 \) |
\(a_1=1,\) \(a_4=0,\) \(a_6=1, \) \(a_t=2 \) |
\(a_1=2,\) \(a_4=0,\) \(a_6=1, \) \(a_t=3 \) |