|
最佳結構描述: |
|---|
|
Def: \( A_{i\dots j} = A_iA_{i+1}\dots A_j \) 其中有個\( k, i\leq k < j \),可將 \( A_{i\dots j} \)拆成 \( A_{i\dots k}\times A_{k+1\dots j} \) 這樣就可以討論\( k \)在多少的時候,會有最小乘法量 這樣原本 \( A_iA_{i+1}\dots A_{j} \) \( = A_{i\dots k}\times A_{k+1\dots j} \) 也就為結合律表示 \( (A_iA_{i+1}\dots A_{k}) \times (A_{k+1}\dots A_{j}) \) |
| Matrix | Dimensions |
|---|---|
| A | \( 2\times 4 \) |
| B | \( 4\times 3 \) |
| C | \( 3\times 2 \) |
| D | \( 2\times 5 \) |
| E | \( 5\times 1 \) |
| m i\j | \( A_1 \) | \( A_2 \) | \( A_3 \) | \( A_4 \) | \( A_5 \) |
| \( A_1 \) | \( 0 \) |
\(
k=1
\) \( 24 \) |
\(
k=2
\) \( 36 \) |
\(
k=3
\) \( 56 \) |
\(
k=1
\) \( 36 \) |
| \( A_2 \) | - | 0 |
\(
k=2
\) \( 24 \) |
\(
k=3
\) \( 64 \) |
\(
k=2
\) \( 28 \) |
| \( A_3 \) | - | - | 0 |
\(
k=3
\) \( 30 \) |
\(
k=3
\) \( 16 \) |
| \( A_4 \) | - | - | - | 0 |
\(
k=4
\) \( 10 \) |
| \( A_5 \) | - | - | - | - | 0 |
| k | \( 2 \) | \( 3 \) | \( 4 \) | \( 5 \) |
| \( 1 \) | \( 1 \) | \( 2 \) | \( 3 \) | \( 1 \) |
| \( 2 \) | - | 2 | \( 3 \) | \( 2 \) |
| \( 3 \) | - | - | 3 | \( 3 \) |
| \( 4 \) | - | - | - | 4 |