big-O\( f(n)=O(g(n)) \)\( g(n) \) is asymptotically upper bound of \( f(n) \). \( \exists c_0,n_0>0 \) \( \rightarrow \forall n\geq n_0 \; (0\leq f(n)\leq c_0g(n)) \) big-omega\( f(n)=\Omega(g(n)) \)\( g(n) \) is asymptotically lower bound of \( f(n) \). \( \exists c_0,n_0>0 \) \( \rightarrow \forall n\geq n_0 \; (0\leq c_0g(n)\leq f(n)) \) big-theta\( f(n)=\Theta(g(n)) \)\( g(n) \) is asymptotically tight bound of \( f(n) \). \( \exists c_0,c_1,n_0>0 \) \( \rightarrow \forall n\geq n_0 \; (0\leq c_0g(n)\leq f(n)\leq c_1g(n)) \) small-o\( f(n)=o(g(n)) \)\( g(n) \) is asymptotically strict upper bound of \( f(n) \). \( \forall c_0>0,\exists n_0>0 \) \( \rightarrow \forall n\geq n_0 \; (0\leq f(n) < c_0g(n)) \) small-omega\( f(n)=\omega(g(n)) \)\( g(n) \) is asymptotically strict lower bound of \( f(n) \). \( \forall c_0>0,\exists n_0>0 \) \( \rightarrow \forall n\geq n_0 \; (0 \leq c_0g(n)< f(n)) \)  | 
![]() image reference  
image reference  |